Passage through the mammalian gut triggers a phenotypic switch that promotes *Candida albicans* commensalism

by Kalyan Pande, Changbin Chen and Suzanne M. Noble

Supplementary Information

Supplementary References

- 42. Noble, S.M., French, S., Kohn, L.A., Chen, V. & Johnson, A.D. Systematic screens of a Candida albicans homozygous deletion library decouple morphogenetic switching and pathogenicity. *Nat Genet* **42**, 590-598 (2010).
- 43. Tsong, A.E., Miller, M.G., Raisner, R.M. & Johnson, A.D. Evolution of a combinatorial transcriptional circuit: a case study in yeasts. *Cell* **115**, 389-399 (2003).
- 44. Tuch, B.B., *et al.* The transcriptomes of two heritable cell types illuminate the circuit governing their differentiation. *PLoS Genet* **6**, e1001070 (2011).

Supplementary Figure 1. *WOR1* is required for wild-type commensal fitness

Legend: A) and B) Two independent isolates of *wor*1 $\Delta\Delta$ are attenuated in the murine commensal model relative to isogenic wild-type strains. These mutants were generated independently from the *wor*1 $\Delta\Delta$ isolate tested in Figure 1C. C) A *wor*1 Δ /*WOR*1 heterozygous deletion mutant is attenuated for commensalism. Note that the haploinsufficiency phenotype can be complemented by increasing *WOR*1 expression from the remaining allele by means of the *TDH3* promoter (*WOR*1^{OE} strain, Figure 3A). D) A His-Leu- double auxotroph exhibits wild-type commensalism. Strain designations are: (A) *wor*1 $\Delta\Delta$ (SN1064), WT (SN425); B) *wor*1 $\Delta\Delta$ (RZY244), WT (QMY23); C) *wor*1 Δ /*WOR*1 (SN999), WT (SN235); D) His-Leu- auxotroph (SN87), prototroph (SN425). Significance was determined using the t-test: A) *p<0.005, **p<0.001, ***p<0.0001; B) n.s. not significant, **p<0.002; C) **p=0.0002, ***p<0.0001; D) n.s. not significant.

Supplementary Figure 2. Estimation of *WOR1* gene expression in *MTLa*/ α cells

С

	# Cells	# 5-FOA- resistant	# 5-FOA- resistant, PCR-positive	WOR1 expression frequency	Standard deviation
in vivo	1.60 x 10e6	3.17 x 10e4	3.14 x 10e4	1.94%	0.55%
in vitro	1.79 x 10e6	47	4	0.0002%	0.0001%

Supplementary Figure 2 Legend: Estimation of *WOR1* gene expression in *MTLa*/ α cells. A) Strategy for capturing *WOR1* expression events. The *WOR1* promoter *FLP* strain (SN1020) has the following genotype: *wor1* Δ ::*WOR1* promoter *FLP/WOR1*, *leu2* Δ ::FRT-*URA3*-FRT/leu2 Δ . Activation of the WOR1 promoter in this strain results in transcription of FLP, followed by Flpmediated excision of URA3, and acquisition of resistance to 5-FOA. Note that 5-FOAresistance may alternatively arise from mutation of the URA3 gene or loss of URA3 through mitotic recombination, gene conversion (via homologous sequences on the other copy of Chromosome 7), or chromosome loss. Colony PCR is performed to screen for products of Flp-mediated recombination, which generate a unique 346 bp product ("positive" test). B) Representative PCR results. On the left, PCR for Flp-mediated events is shown for SN87 (lane 1), the reference strain used to construct $WOR1_{promoter}$ -*FLP*; the $WOR1_{promoter}$ -*FLP* starting strain (lane 2); and three 5-FOA-resistant isolates of $WOR1_{promoter}$ -*FLP* (lanes 3-5) that were recovered from animals. Note that the trans-FRT reaction in Flp-recombinant strains outcompetes the trans- *leu2* Δ reaction, such that only the 346 bp product is apparent in lanes 3-5. On the right, PCR using primers internal to the leu2∆ locus confirms that all five strains retain this locus. C) Frequency of Flp-mediated URA3 excision in vivo and in vitro. The WOR1 promoter-FLP strain was propagated for three days in the commensal model (n=6 mice) or for 8 generations in vitro at 37°C (n=4 cultures). The frequency of cells expressing WOR1 propagated under a given condition was estimated from the ratio of (5-FOAR, PCR-positive colonies) / (total number of colonies). Diagnostic PCR was performed on 288 of the 31,700 5-FOA-resistant isolates recovered from mice and on all 47 5-FOA-resistant isolates obtained in vitro. 277/278 in vivo strains and 4/47 in vitro strains tested positive for the 346 bp marker of Flp-mediated recombination. standard Average values with deviations were plotted.

Legend: A) *WOR1* mRNA is highly expressed in the *WOR1*^{OE} (*TDH3*_{promoter}-*WOR1*) strain. RT-qPCR was performed on three biological replicates each of wild-type white (*MTLa*/a, SN425), *WOR1*^{OE} white (*MTLa*/a, SN928), and opaque (*MTLa*, SN967) strains. Median values are shown, along with standard deviations. Relative to its expression is WT cells, *WOR1* is induced 102-fold in the *WOR1*^{OE} strain and 175-fold in opaque cells. B) Wor1 protein is highly expressed in the *WOR1*-overexpression strain. Immunoblot of Wor1 protein prepared from wild-type white (*MTLa*/a, SN425), *WOR1*^{OE} white (*MTLa*/a, SN828 and three additional isolates), and opaque (*MTLa*, SN967) strains. C) In the mammalian GI tract, the *TDH3* promoter is active but not induced relative to *in vitro*. RT-qPCR of mRNA from wild-type white cells (*MTLa*/a, SN425) after 8 doublings in liquid YEPD medium at 37°C (*in vitro*) or directly recovered from small intestines (SI), ceca, or large intestines (LI) after 10 days in the murine commensal model. Medians with standard deviations are shown for 5 (laboratory culture) or 3 (commensalism model) biological replicates.

Supplementary Figure 4. *MTLa*/ α GUT cells display an early fitness advantage in the mammalian GI tract, but are less fit in laboratory culture and in blood-stream infection

Legend: A) Commensal competition experiment between WT *MTLa*/ α white cells (SN425) and *WOR1*^{OE} *MTLa*/ α GUT cells (SN1045). Note that, in contrast to the case with white phase *WOR1*^{OE} (Figure 2A), GUT phase cells are highly competitive from the beginning of the time course. ns nonsignificant, ** p<0.02, *** p<0.005. B) *in vitro* competition between the same two strains. Strains were co-cultured for 8 generations in liquid YEPD medium at 37°C. Relative abundances of strains at the beginning (I) and end (R) of the time course were determined by qPCR. *** p<0.0001. C) Competition between the same two strains in a murine model of disseminated disease. Strains were co-infected into BALB/c mice via lateral tail vein, *C. albicans* was recovered from kidneys of moribund animals after a median of 5 days post infection (range 4 to 6 days), and relative abundances in the inoculum (I) and after recovery from kidneys (R) was determined by qPCR.

Supplementary Figure 5. Additional phenotypes of GUT and white cells

Legend: A) The GUT phenotype is stable at 37°C. After 3 days of incubation on YEPD medium at room temperature (~25°C) or 37°C, *MTLa*/ α GUT (SN1045) and *MTLa* opaque (SN967) cells were visualized by light microscopy. B) SEM images of white phase WT (SN425) and *WOR1*^{OE} (SN928) cells, which lack pimple structures. C) White phase *MTLa* (SN966) and *WOR1*^{OE} (SN1044) strains fail to produce germ tubes in response to mating pheromone.

+ α**F**&

S

 $+ \alpha F$

P

0 00

Supplementary Figure 6. Model of phenotypic switching in the host

Legend: According to this model, MTL**a**/α white cells exposed GI the mammalian signals triggering to tract encounter WOR1 shift to GUT state. which expression and a the is specialized for GUT cells this commensalism. exiting rapidly white which space convert back to the state. is alternatively trigger GUT virulent. Additional signals may cells to undergo loss of one allele of MTL (e.g. through loss of Chromosome 5) sexually-competent and conversion to the opaque state.

Supplementary Figure 7

F WT vs. *wor1*^{\[]} commensalism

Supplementary Figure 7 Legend: Competition experiments in "% abundance of the less fit strain" format. A) WT (SN250) is outcompeted by $efg1\Delta\Delta\Delta$ (SN1011) in the murine commensal model. Plot is derived from the same data as depicted in **Figure 1A**. B) wor1 $\Delta\Delta$ (SN881) is outcompeted by WT (SN250) in the murine commensal model. Plot is derived from the same data as depicted in Figure 1C. C) WT (SN425) is outcompeted by WOR1OE (SN928) in the murine commensal model. Plot is derived from the same data as depicted in Figure 2A. D) Opaque cells (SN967) are outcompeted by WT white cells (SN425) in the murine commensal model. Plot is derived from the same data as depicted in **Figure 3C**. E) wor1 $\Delta\Delta$ (SN1064) is outcompeted by WT (SN425) in the murine commensal model. Plot is derived from the same data as depicted in **Supplementary Figure 1A.** F) wor1 $\Delta\Delta$ (RZY244) is outcompeted by WT (QMY23) in the murine commensal model. Plot is derived from the same data as depicted in **Supplementary Figure 1B**. G) wor1\(\/WOR1 heterozygous knockout (SN999) is outcompeted by WT (SN235) in the murine commensal model. Plot is derived from the same data as depicted in **Supplementary Figure 1C**. H) A His-Leu- double auxotroph (SN87) is as fit as a prototroph (SN425) in the murine commensal model. Plot is derived from the same data as depicted in **Supplementary Figure 1D**. I) White phase WT (SN425) is outcompeted by GUT cells (SN1045) in the murine commensal model. Plot is derived from the same data as depicted in **Supplementary Figure 4A**. J) GUT cells (SN1045) are outcompeted by white phase WT (SN425) in liquid culture medium. Plot is derived from the same data as depicted in **Supplementary Figure 4B**. K) GUT cells (SN1045) are outcompeted by white phase WT (SN425) in a murine model of disseminated candidiasis. Plot is derived from **4C**. the data as depicted in Supplementary Figure same

Supplementary Table 1. *MTL*a and *MTL* α Genotypes of White and GUT Cells After Recovery from the Murine Commensal Model

Experiment	Phenotype	<i>MTL</i> a present	<i>MTL</i> α present	Colonies	% <i>MTL</i> a /α
1	white	44	44	44	100
1	GUT	32	40	40	80
2	white	53	52	53	98
2	GUT	7	8	8	88
3	white	24	24	24	100
3	GUT	24	24	24	100
4	white	24	24	24	100
4	GUT	24	24	24	100
Total	white	145	144	145	99
Total	GUT	87	96	96	91

Supplementary Table 2. Mating Efficiencies of Various Strains

	Strain a	nd Phase	Mating Efficiency (His ⁺ Arg ⁺ /His ⁺ Arg ⁻)						
Cross	Strain 1 (His⁺Arg⁻)	Strain 2 (His⁻ Arg⁺)	3 days	5 days	13 Days				
1	$MTL\alpha$ opaque	<i>MTLa opaque</i>	3.3 x 10-1	8.0 x 10-1	1.5 x 10-1				
2	<i>MTL</i> a / α white	<i>MTLa opaque</i>	<6 x 10-7	<2 x 10-7	<1 x 10-7				
3	WOR1 ^{0E} MTL a /α white	<i>MTLa opaque</i>	4.6 x 10-6	4.2 x 10-6	5.7 x10-6				
4	<i>WOR1^{OE} MTLa/α</i> GUT	MTLa opaque	<2 x 10-7	<3 x 10-7	<2 x 10-7				

Supplementary Table 4. Regulated Genes Sets in GUT and opaque cells

Gene Name	Description of Gene	Cellular	Cellular (Wh vs. Op)		RNA Expression Level				Relative Expression				
Standard Name	Product	Process	Lan et al.	Tsong et al.	Tuch et al.	WT Wh	<i>WOR1</i> Wh	WOR1 GUT	<i>MTL</i> a Wh	<i>MTL</i> a Op	GUT/ Wh	Op/ Wh	GUT/ Op
UPREGULATE	UPREGULATED IN GUT AND OPAQUE (VS. WH CONTROLS)												
PXP2 orf19.1655	Putative acyl-CoA oxidase	Lipid Utilization	Ор	Ор	Ор	1.7	7.6	30.0	1.0	47.7	17.8*	47.7*	0.6
ANT1 orf19.6254	Putative adenine nucleotide transmembrane transporter	Lipid Utilization	Ор	Ор	Ор	1.1	2.7	6.8	1.0	5.7	6.4*	5.7*	1.2
FOX2 orf19.1288	3-hydroxyacyl-CoA epimerase	Lipid Utilization	Ор			1.2	3.3	5.0	1.0	6.1	4.1*	6.1*	0.8
POX1 orf19.5723	Putative acyl-CoA oxidase	Lipid Utilization	Ор		Ор	1.1	2.2	4.1	1.0	5.0	3.9*	5.0*	0.8
ECI1 orf19.6445	which is involved in fatty acid oxidation	Lipid Utilization			Ор	1.1	2.2	3.1	1.0	5.2	2.9*	5.2*	0.6*
POX1-3 orf19.1652	Putative acyl-CoA oxidase	Lipid Utilization				1.0	1.8	3.9	1.0	3.1	3.8*	3.1*	1.3
CAT2 orf19.4591	Major carnitine acetyl transferase	Lipid Utilization		Ор		1.1	1.8	2.5	1.0	2.6	2.2*	2.6*	0.9
POT1 orf19.7520	Putative peroxisomal 3-oxoacyl CoA thiolase	Lipid Utilization				1.0	1.9	2.8	1.0	2.7	2.7*	2.7*	1.1
SPS20 orf19.4157	Peroxisomal 2,4-dienoyl-CoA reductase	Lipid Utilization	Ор	Ор	Ор	1.0	1.7	3.0	1.0	5.2	2.9*	5.2*	0.6
NAG1 orf19.2156	Glucosamine-6-phosphate deaminase	NAG Utilization	Ор		Ор	1.0	4.2	17.7	1.0	10.6	17.4*	10.6*	1.7*
DAC1 orf19.2157	N-acetylglucosamine-6-phosphate (GlcNAcP) deacetylase	NAG Utilization		Ор	Ор	1.2	2.5	10.0	1.0	5.5	8.3*	5.5*	1.8*
HXK1 orf19.2154	N-acetylglucosamine (GlcNAc) kinase	NAG Utilization			Ор	1.0	1.5	2.1	1.0	2.2	2.1*	2.2*	0.9

UPREGULATED IN OPAQUE ONLY (VS. WH CONTROLS)													
SAP2 orf19.3708	Secreted aspartyl proteinase	Protein Utilization		Ор	Wh	1.2	1.2	1.3	1.0	4.4	1.1	4.4*	0.3*
SAP3 orf19.6001	Secreted aspartyl proteinase	Protein Utilization	Ор	Ор		1.0	1.2	1.1	1.0	2.5	1.1	2.4*	0.5*
SAP4 orf19.5716	Secreted aspartyl proteinase	Protein Utilization		Ор		1.3	1.7	1.7	1.0	11.9	1.3	11.9*	0.1*
SAP6 orf19.5542	Secreted aspartyl proteinase	Protein Utilization			Wh	1.5	1.7	1.6	1.0	12.0	1.1	12.0*	0.1*
SAP7 orf19.756	Secreted aspartyl proteinase	Protein Utilization				1.9	4.5	1.0	1.9	5.5	0.5	2.9*	0.2*
SAP99 orf19.853	Putative secreted aspartyl protease	Protein Utilization	Ор		Ор	1.1	1.3	1.4	1.0	7.3	1.3	7.3*	0.2*
DOWNREGULATED IN GUT AND OPAQUE (VS. WH CONTROLS)													
ALS2 orf19.1097	ALS family protein with roles in adhesion, biofilm formation, germ tube induction	Adhesion	Wh		Wh	5.5	1.4	1.0	4.6	1.0	0.2*	0.2*	1.0
ADH1 orf19.3997	Alcohol dehydrogenase	Adhesion			Wh	20.9	4.7	1.0	21.7	2.6	0.0*	0.1*	0.4
orf19.4216	Putative heat shock protein	Adhesion			Wh	37.1	28.2	3.1	38.9	1.0	0.1*	0.0*	3.1
CSH1 orf19.4477	Aldo-keto reductase family member with role in fibronectin adhesion	Adhesion			Wh	2.2	2.0	1.0	2.4	1.0	0.5*	0.4*	1.0
ALS4 orf19.4555	ALS family protein with roles in adhesion and germ tube induction	Adhesion	Wh	Wh	Wh	8.4	2.0	1.0	7.6	1.2	0.1*	0.2*	0.8
EFG1 orf19.610	Transcriptional repressor required for white-phase cell type, hyphal growth, metabolism with roles in adhesion and virulence	Adhesion	Wh	Wh	Wh	5.3	2.0	1.1	4.8	1.0	0.2*	0.2*	1.1

DOWNREGUI	LATED IN GUT ONLY (VS. WH	I CONTROLS	<i>5)</i>										
FRE10 orf19.1415	Major cell-surface ferric reductase	Iron uptake			Wh	11.0	5.1	1.0	9.6	2.9	0.1*	0.3*	0.3*
CFL4 orf19.1932	Putative ferric reductase	Iron uptake			Wh	7.0	2.0	1.0	9.1	2.0	0.1*	0.2	0.5
SIT1 orf19.2179	Transporter of ferrichrome siderophores	Iron uptake		Wh		2.1	1.9	1.0	1.9	1.6	0.5*	0.8	0.6
FET34 orf19.4215	Putative multicopper ferroxidase	Iron uptake	Wh		Wh	29.0	2.1	1.0	23.7	1.3	0.0*	0.1	0.8
FTH1 orf19.4802	Protein similar to S. cerevisiae Fth1p, a high affinity iron transporter	Iron uptake			Wh	2.1	1.2	1.0	2.0	1.4	0.5*	0.7	0.7
FTR1 orf19.7219	High-affinity iron permease	Iron uptake			Wh	7.1	1.9	1.0	6.2	1.8	0.1*	0.3*	0.5*
FTR2 orf19.7231	High-affinity iron permease	Iron uptake			Ор	2.8	1.3	1.0	2.4	1.5	0.4*	0.6	0.7*
PDC11 orf19.2877	Putative pyruvate decarboxylase	Glucose Utilization				10.1	3.9	1.0	7.0	1.9	0.1*	0.3	0.5
PGK1 orf19.3651	Phosphoglycerate kinase	Glucose Utilization		Wh		2.1	1.6	1.0	1.8	1.6	0.5*	0.9	0.6*
PFK1 orf19.3967	Phosphofructokinase alpha subinit	Glucose Utilization		Wh		2.1	1.5	1.0	2.0	1.5	0.5*	0.8	0.7*
ADH1 orf19.3997	Alcohol dehydrogenase	Glucose Utilization			Wh	20.9	4.7	1.0	21.7	2.6	0.0*	0.1*	0.4
FBA1 orf19.4618	Putative fructose-bisphosphate aldolase	Glucose Utilization		Wh		2.2	1.4	1.0	1.7	1.4	0.5*	0.9	0.7
ADH2 orf19.5113	Alcohol dehydrogenase	Glucose Utilization	Ор	Wh	Ор	11.8	3.1	1.0	9.6	2.6	0.1*	0.3*	0.4
HXK2 orf19.542	Hexokinase II	Glucose Utilization		Wh		2.1	1.5	1.0	1.9	1.6	0.5*	0.8	0.6*

HIGHER IN OPAQUE THAN GUT (DIRECT COMPARISON, IN ADDITION TO SAP GENES)													
STE4 orf19.799	Beta subunit of heterotrimeric G protein required for mating	Mating			Ор	1.2	1.5	1.0	3.7	15.9	0.9	4.3*	0.1*
CAG1 orf19.4015	Alpha subunit of heterotrimeric G protein required for mating	Mating				1.0	1.3	1.2	14.2	20.7	1.2	1.5	0.1*
STE18 orf19.6551.1	Gamma subunit of heterotrimeric G protein involved in mating	Mating				1.0	1.1	1.7	12.1	15.2	1.7	1.3	0.1*
STE2 orf19.696	Receptor for alpha factor mating pheromone	Mating				1.1	1.2	1.0	3.7	4.0	0.9	1.1	0.2*
HIGHER IN G	UT THAN OPAQUE	,		-						-			
GIT2 orf19.1978	glycerophosphoinositol permease	Phosphate transport			Wh	3.6	2.9	2.2	4.3	1.0	0.6*	0.2*	2.2*
GIT3 orf19.1979	Putative glycerophosphoinositol permease	Phosphate transport	Wh	Wh	Wh	28.1	8.0	2.8	26.7	1.0	0.1*	0.0*	2.8*
PHO84 orf19.655	High-affinity phosphate transporter	Phosphate transport	Ор		Ор	1.3	4.7	14.4	1.0	4.2	10.7*	4.2*	3.5*
orf19.6888	Putative transcription factor with Gal4p-like DNA-binding domain	Transcription Factor			Wh	2.0	1.9	2.9	1.9	1.0	1.5	0.5*	2.9*
orf19.4914	Putative transcription factor	Factor			Wh	2.1	1.8	2.8	2.2	1.0	1.3	0.5*	2.8*
LEU3 orf19.4225	Putative transcription factor with zinc-finger domain	Transcription Factor				3.8	3.4	3.2	1.1	1.0	0.8	0.9	3.2*
orf19.2726	Putative plasma membrane protein	Cell Wall or Secreted	Wh	Wh	Wh	10.2	6.6	4.3	9.2	1.0	0.4*	0.1*	4.3*
orf19.5070	Putative cell-wall mannoprotein	Cell Wall or Secreted	Wh			1.8	2.0	3.0	1.7	1.0	1.7*	0.6	3.0*
orf19.1258	Putative adhesin-like protein	Secreted	Wh	Wh	Wh	6.3	6.9	2.9	6.5	1.0	0.5*	0.2*	2.9*
RBT4 orf19.6202	Putative secreted protein that is required for virulence	Cell Wall or Secreted			Wh	7.1	3.8	2.7	6.7	1.0	0.4*	0.1*	2.7*

RBE1 orf19.7218	Cell wall protein	Cell Wall or Secreted				1.3	1.6	2.4	1.1	1.0	1.9*	0.9	2.4*
orf19.5267	Putative cell wall adhesin-like protein	Cell Wall or Secreted			Ор	1.2	1.3	5.6	1.0	2.2	4.9*	2.2*	2.6*
RHD1 orf19.54	Putative beta- mannosyltransferase	Cell Wall Structure	Wh	Wh	Wh	7.1	4.0	4.8	6.5	1.0	0.7	0.2*	4.8*
CIS2 orf19.6053	Putative role in regulation of biogenesis of the cell wall	Cell Wall Structure			Wh	2.3	1.9	2.4	2.4	1.0	1.1	0.4*	2.4*
SKN2 orf19.348	Protein with a potential role in beta 1,6 glucan biosynthesis	· Cell Wall Structure			Wh	2.5	1.6	2.4	2.9	1.0	1.0	0.3*	2.4*

Descriptions of published white (w) and opaque (o) gene sets refer to: ²⁸ Lan et al.(2002) PNAS 23: 14902-12; ⁴³ Tsong et al. (2003) Cell

115: 389-99; ⁴⁴ Tuch et al. (2010) PLoS Genetics 6: e1001070. *Denotes a significant difference using BAGEL analysis (Supp. Table 3).

Supplementary Table 5. Strains Used in this Study

O tasia		MTL	Diama	5 11 0	D	
Strain	Nickname	genotype	Phase	Full Genotype	Parent	Reference
SN78	Wild type	MTL a /α	white	leu2Δ/leu2Δ, ura3Δ/ura3Δ, his1Δ/his1Δ iro1Δ/iro1Δ, MTL a /MTLα	RM1000 #2	14
SN87	Wild type	MTL a /α	white	leu2Δ/leu2Δ, ura3Δ/URA3, his1Δ/his1Δ iro1Δ/IRO1, MTL a /MTL α	RM1000 #2	14
SN152	Wild type	MTL a /α	white	leu2Δ/leu2Δ, ura3Δ/URA3, his1Δ/his1Δ, arg4Δ/arg4Δ, iro1Δ/lRO1, MTL a /MTL α	RM1000 #2	14
SN235	Wild type	MTL a /α	white	leu2Δ::C.d.HIS1/leu2Δ, ura3Δ/URA3, his1Δ/his1Δ, arg4Δ/arg4Δ, iro1Δ/lRO1, MTLa/MTL α	SN152	This study
SN250	Wild type	MTL a /α	white	leu2Δ::C.m.LEU2/leu2Δ::C.d.HIS1, ura3Δ/URA3, his1Δ/his1Δ, arg4Δ/arg4Δ, iro1Δ/IRO1, MTL a /MTLα	SN152	42
SN425	Wild type	MTL a /α	white	leu2Δ::C.d.HIS1/leu2Δ::C.m.LEU2, ura3Δ/URA3, his1Δ/his1Δ, arg4Δ/arg4Δ::C.d.ARG4, iro1Δ/IRO1, MTL a /MTLα	SN152	42
QMY23	Wild type	MTL a /α	white	leu2Δ::C.m.LEU2/leu2Δ::C.d.HIS1, ura3Δ/URA3, his1Δ/his1Δ, iro1Δ/IRO1, MTL a /MTLα	SN87	39
SN1011	efg1∆/∆	MTL a /α	white	efg1Δ::C.m.LEU2/efg1Δ::C.d.HIS1, leu2Δ/leu2Δ, ura3Δ/URA3, his1Δ/his1Δ, arg4Δ/arg4Δ, iro1Δ/IRO1, MTL a /MTLα	SN152	14
SN999	wor1∆/ WOR1	MTL a /α	white	WOR1/wor1 Δ ::C.d.HIS1, leu2 Δ /leu2 Δ , ura3 Δ /URA3, his1 Δ /his1 Δ , arg4 Δ /arg4 Δ , iro1 Δ /IRO1, MTL a /MTL α	SN152	This study
SN881	wor1Δ/Δ	MTL a /α	white	wor1Δ::C.m.LEU2/wor1Δ::C.d.HIS1, leu2Δ/leu2Δ, ura3Δ/URA3, his1Δ/his1Δ, arg4Δ/arg4Δ, iro1Δ/IRO1, MTL a /MTLα	SN152	This study
RZY244	wor1Δ/Δ	MTL a /α	white	wor1Δ::C.m.LEU2/wor1Δ::C.d.HIS1, leu2Δ/leu2Δ, ura3Δ/URA3, his1Δ/his1Δ, iro1Δ/IRO1, MTL a /MTLα	SN87	Zordan & Johnson, un- published
SN1064	wor1Δ/Δ	MTL a /α	white	wor1Δ::C.m.LEU2/wor1Δ::C.d.HIS1, leu2Δ/leu2Δ, ura3Δ/URA3, his1Δ/his1Δ, arg4Δ/ARG4, iro1Δ/IRO1, MTL a /MTLα	SN152	This study
SN1014	WOR1 _{prom} -FLP intermediate	MTL a /α	white	wor1 Δ ::FLP-SAT1/WOR1, leu2 Δ /leu2 Δ , ura3 Δ /ura3 Δ , his1 Δ /his1 Δ , iro1 Δ /iro1 Δ , MTLa/MTL α	SN78	This study
SN1020	WOR1 _{prom} -FLP	MTL a /α	white	wor1Δ::FLP-SAT1/WOR1, leu2Δ::FRT- URA3-FRT/leu2Δ, ura3Δ /ura3Δ, his1Δ/his1Δ, iro1Δ/iro1Δ, MTL a /MTLα	SN1014	This study
SN967*	<i>MTLa</i> opaque	MTLa/a	opaque	leu2∆::C.m.LEU2/leu2∆::C.d.HIS1, ura3∆/URA3, his1∆/his1∆, iro1∆/IRO1, MTL a /MTL a	QMY23	35
SN966	MTLa	MTLa/a	white	leu2∆::C.m.LEU2/leu2∆::C.d.HIS1, ura3∆/URA3, his1∆/his1∆, iro1∆/IRO1, MTLa/MTLa	SN967	This study
SN1008	$MTL\alpha$ opaque	MTLΔ/α	opaque	leu2∆/leu2::SAT1, ura3∆/URA3, his1∆/his1∆, arg4∆/arg4∆, iro1∆/IRO1,	SN152	This study

				mtl a Δ::C.d.HIS1/MTLα		
SN1038	<i>MTLa opaque</i>	MTL a /Δ	opaque	leu2Δ/leu2Δ, ura3Δ/URA3, his1Δ/his1Δ, arg4Δ/arg4Δ, iro1Δ/IRO1, MTL a /mtlαΔ::C.d.ARG4	SN152	This study
SN927	WOR1 ^{0E} /WOR1	MTL a /α	white	SAT1-TDH3 _{prom} -WOR1/WOR1, leu2Δ::C.m.LEU2/leu2Δ::C.d.HIS1, ura3Δ/URA3, his1Δ/his1Δ, arg4Δ/arg4, Δiro1Δ/IRO1, MTL a /MTLα	SN250	This study
SN928	WOR1 ^{0E}	MTL a /α	white	SAT1-TDH3 _{prom} - WOR1/wor1Δ::C.d.ARG4, leu2Δ::C.m.LEU2/leu2Δ::C.d.HIS1, ura3Δ/URA3, his1Δ/his1Δ, arg4Δ/arg4Δ, iro1Δ/IRO1, MTL a /MTLα	SN927	This study
SN1001	WOR1 ^{0E}	MTL a /α	white	SAT1-TDH3 $_{prom}$ - WOR1/wor1 Δ ::C.d.HIS1, leu2 Δ /leu2 Δ , ura3 Δ /URA3, his1 Δ /his1 Δ , iro1 Δ /lRO1, MTLa/MTL α	SN999	This study
SN1044	<i>WOR1^{OE}</i> (post-mouse)	MTL a /α	white	SAT1-TDH3 _{prom} - WOR1/wor1Δ::C.d.ARG4, leu2Δ::C.m.LEU2/leu2Δ::C.d.HIS1, ura3Δ/URA3, his1Δ/his1Δ, arg4Δ/arg4Δ, iro1Δ/IRO1, MTL a /MTLα	SN928	This study
SN1045	<i>WOR1^{OE}</i> GUT (post-mouse)	MTL a /α	GUT	SAT1-TDH3 _{prom} - WOR1/wor1 Δ ::C.d.ARG4, leu2 Δ ::C.m.LEU2/leu2 Δ ::C.d.HIS1, ura3 Δ /URA3, his1 Δ /his1 Δ , arg4 Δ /arg4 Δ , iro1 Δ /IRO1, MTL a /MTL α	SN928	This study
SN1046	<i>WOR1^{0E}</i> GUT (post-mouse)	MTL a /α	GUT	SAT1-TDH3 _{prom} - WOR1/wor1Δ::C.d.HIS1, leu2Δ/leu2Δ, ura3Δ/URA3, his1Δ/his1Δ, iro1Δ/IRO1, MTL a /MTLα	SN1001	This study

C.d. ARG4 denotes Candida dubliniensis ARG4, C.d. HIS1 denotes Candida dubliniensis HIS1, and C.m.

LEU2 denotes Candida maltosa LEU2.

* SN967 was constructed by Mitrovich et al. ³⁵ but was not assigned a unique name to distinguish it from its *MTL* a/α parent (QMY23).

Supplementary Table 6. Plasmids Used in this Study

Plasmid	Insert	Use	Selectable Markers	Vector
pSN209	<i>Pmel</i> -sequence ending 120 bp upstream of <i>WOR1</i> ORF-SAT1 gene- <i>TDH3</i> promoter-1 st 300 bp of <i>WOR1</i> ORF- <i>Pmel</i>	Replacement of WOR1 promoter with (SAT1 gene and) TDH3 promoter	AmpR, ScURA3, NatR	pRS316
pSN288	<i>Pmel-</i> final 500 bp of <i>WOR1</i> promoter- <i>FLP</i> ORF- <i>SAT1</i> gene- <i>WOR1</i> downstream sequence- <i>Pmel</i>	Replacement of <i>WOR1</i> ORF with <i>FLP</i> ORF	AmpR, <i>ScURA3,</i> NatR	pRS316
pSN290	<i>Pmel-LEU2</i> upstream sequence-FRT- <i>C. albicans URA3</i> -FRT- <i>LEU2</i> downstream sequence- <i>Pmel</i>	Introduction of FRT- URA3-FRT at the LEU2 locus	AmpR, ScURA	pRS316

Pmel denotes the recognition sequence for this restriction enzyme; *ScURA3* denotes the *URA3* gene from *Saccharomyces cerevisiae*, AmpR denotes resistance to ampicillin, NatR denotes resistance to nourseothricin.

Supplementary Table 7. Primers Used in this Study

Primer Name	Purpose	Sequence (5' to 3')
SNO1122	<i>wor1</i> -ko gene disruption primer 5' flank, forward (SN881 and SN1064)	TCCTGTATTGGTATTGGTGAG
SNO1123	wor1-ko gene disruption primer 5' flank, reverse (SN881 and SN1064)	CACGGCGCGCCTAGCAGCGGTAAGACAGATATT GAAACTTCAC
SNO1124	wor1-ko gene disruption primer 3' flank, forward (SN881 and SN1064)	GTCAGCGGCCGCATCCCTGCATCTTATATATGTG GGTCTGTG
SNO1125	<i>wor1</i> -ko gene disruption primer 3' flank, reverse (SN881 and SN1064)	TTCAGCTCTCTAAGTAGTATTG
SNO1271	Common primer for amplifying His, Leu and Arg casettes, forward	CCGCTGCTAGGCGCGCCGTGACCAGTGTGATGG ATATCTGC
SNO1272	Common primer for amplifying His, Leu and Arg casettes, reverse	GCAGGGATGCGGCCGCTGACAGCTCGGATCCA CTAGTAACG
SNO1126	Wor1 ORF check primer, forward	GACGACGAGTACGACCACAA
SNO1127	Wor1 ORF check primer, reverse	CAGCTTTCCCTTCCATGTGT
SNO1128	<i>Wor1</i> integration verification check left, forward	TTTTCTTTCCAAAACCCTGCC
SNO1129	<i>Wor1</i> integration verification check right, reverse	TCCCTTCATGAATAGTTTCCC
SNO1130	<i>C. dubliniensis HIS1</i> integration verification check left, reverse	ATTAGATACGTTGGTGGTTC
SNO1131	<i>C. dubliniensis HIS1</i> integration verification check right, forward	AACACAACTGCACAATCTGG
SNO1132	C. maltosa LEU2 integration verification check left, reverse	AGAATTCCCAACTTTGTCTG
SNO1133	C. maltosa LEU2 integration verification check right, forward	AAACTTTGAACCCGGCTGCG
SNO143	C. dubliniensis ARG4 integration on C. albicans ARG4 locus, 5' flank, forward	GGACAGAAAGTTATTGTACAG
SNO144	C. dubliniensis ARG4 integration on C. albicans ARG4 locus, 5' flank, reverse	TCACGGCGCGCCTAGCAGCGGGATTATTCTTGA TAGCTGTTATG
SNO1385	<i>C. dubliniensis ARG4</i> integration on <i>C. albicans</i> ARG4 locus, ARG4 insert, forward	CCGCTGCTAGGCGCGCCGTGAAACGAATCAGAC TCTGATACCCAGTGTGATGGATATCTGC
SNO241	C. dubliniensis ARG4 integration on C. albicans ARG4 locus, ARG4 insert, reverse	GCAGGGATGCGGCCGCTGACAGCTCGGATCCAC TAGTAACG
SNO145	C. dubliniensis ARG4 integration on C. albicans ARG4 locus, 3' flank, forward	GTCAGCGGCCGCATCCCTGCGTCATATAATAATC ACAGTATTG
SNO146	C. dubliniensis ARG4 integration on C. albicans ARG4 locus, 3' flank, reverse	TCAGACGATCTTTACAATGG
SNO187	<i>C. dubliniensis ARG4</i> integration verification check, left, forward	CAAGAGTAGTCTCAAATAAACC
SNO263	<i>C. dubliniensis ARG4</i> integration verification check, left, reverse, qPCR for <i>wor1ko</i> (SN1064), reverse	TTCAACCTTTCAAACGATGC
SNO264	<i>C. dubliniensis ARG4</i> integration verification check right, forward	TCGATACATTTGCGGTACAG
SNO188	<i>C. dubliniensis ARG4</i> integration verification check, right, reverse	CGTTTGGAAGCTGTATATCG
SNO183	qPCR for SN425 WT, SN250 WT and QMY23 WT, forward	GATGCCTTAGCTCATTCTTC
SNO322	Common qPCR primer for SN425 WT, SN250 WT, SN235 WT, efg1ko and wor1ko (SN881), reverse	TGAGCACCATAAGGACGTTC

SNO1003	Common qPCR primer for QMY23 WT and wor1ko (RZY244) reverse	CCGGTTTACTTGGATCTTCG
SNO1007	gPCR for wor1ko (RZY244) forward	GTACACTGACATCTCAAACATCAA
ST49	gPCR for wor1ko (SN1064) forward	
STO8	gPCR for efg1ko forward	TTTTGTGGAGCCTTTCATGA
0100	gPCR for wor1ko (SN881) and wor1het	
STO2	(SN999), forward	AAGATTGGTTTCTGTCGACA
SNO1697	qPCR for <i>wor1het</i> (SN999), reverse	CGTAGCCATGAGCACCATAA
0104404	WOR1-OE and WOR1p-FLP strain	GGCGAATTGGAGCTCCACCGCGGTGGCGGCCG
SNO1134	construction; amplifies WOR1 upstream	
	NOR1 OF strain construction: emplifice	
SNO1135	WOR1-OE strain construction, amplifies	
	WORT upstream region, reverse	
SNO1136	SAT1 casette forward	TCGTCCCC
	WOR1-OF strain construction: amplifies	GACTATACTTGAATTAGACATATTTGAATTCAATT
SNO1137	SAT1 casette, reverse	GTGATG
	WOR1-OF strain construction: amplifies	
SNO1138	WOR1 ORF fragment, forward	ATAGTCC
		GTCGACGGTATCGATAAGCTTGATATCGAATTCC
SNO1139	WOR1-OE strain construction; amplifies	TGCAGCCCGGGGGGATCGTTTAAACTTGTGGTCG
	WORTORF fragment, reverse	TACTCGTCGTCGGGACC
SNO1187	WOR1-OE 5' integration verification check, forward	CCTATTGTTATTGCAGCAACAG
	WOR1-OE 5' integration verification check.	
SNO1188	reverse	GTATTCTGGGCCTCCATGTC
	WOR1-OF 3' integration verification check	
SNO1185	forward	AACCCTTGAAATTCCCTTCA
	WOR1-OE 3' integration verification check.	
SNO1186	reverse	GIGGIIACCAIACCCACCAG
SNO1342	qPCR for SN425 WT, reverse	TCAAACGAAGGTCACACTGACT
SNO1343	qPCR for SN425 WT, forward	AACAGCTATCAAGAATAATCCCGC
STO50	alternate qPCR for SN425 WT, forward	TATGCAGAGAGATATACATC
SNO1355	qPCR for WOR1-OE, forward	CCAATTTGAAGACCATTTACGC
SNO1361	gPCR for WOR1-OE, reverse	GCACGTCAAGACTGTCAAGGAGG
SNO1521	gPCR for SN967 WT, forward	TCTAGTGGTGAATTTGGGTTC
SNO1522	gPCR for SN967 WT, reverse	TAAGTAGATGGAATAGATTTGATC
0104000	PCR check for the presence of OBPa,	001717700100111000010
SNO 1008	forward	GLATATIGLALLAAAGGLAG
SNO1000	PCR check for the presence of OBPa,	CATTECATCACCTCCTTCC
51001009	reverse	GATTICCATGACCICGTICC
SNO1010	PCR check for the presence of OBPalpha,	CAACATCACTCACCTCATCC
3101010	forward	GAAGATGACTCAGGTCATGC
SNO1011	PCR check for the presence of OBPalpha,	
	reverse	
SNO1531	WOR1p-FLP strain construction; amplifies	CATAATATATCAAATTGTGGCATTGCTTAATATTG
	WOR1 upstream region, reverse	AATTGAATTATAC
SNO1532	WOR1p-FLP strain construction; amplifies	GTATAATTCAATTCAATATTAAGCAATGCCACAAT
	FLP-SAT1 casette, forward	
SNO1533	WOR1p-FLP strain construction; amplifies	
	<i>FLP-SA11</i> casette, reverse	
SNO1534	<i>wortp-FLP</i> strain construction; amplifies	
SNO1352	WOR1p-FLP strain construction; amplifies	
	~450bp of WOR1 3'UTR, reverse	
SNO1535	WOR1n-ELP strain verification shock laft	
0101000	wonip-rer strain vernication check, left,	

	forward	
0104500	WOR1p-FLP strain verification check, left,	
SN01536	reverse	CIGITCCGITATGIGTAATCATCC
SNO1537	WOR1p-FLP strain verification check, right forward	CGCCTAACATATGTGAAGTGTGA
SNO1354	WOR1p-FLP strain verification check, right, reverse	CGTTCAGATATTCATACATCCACCT
SNO464	<i>Leu2-FRT-URA-FRT</i> strain construction; amplifies <i>Leu2</i> 5' flank, forward	GGCGAATTGGAGCTCCACCGCGGTGGCGGCCG CTCTAGAACTAGTGGATCGTTTAAACTTGGTAGA TTTACAACTGAAGCCG
SNO1538	<i>Leu2-FRT-URA-FRT</i> strain construction; amplifies <i>Leu2</i> 5' flank, reverse	CAGTAGCTCGAGTTAAATCCGAAGTTCCTATTCT CTAGAAAGTATAGGAACTTCCTCGAGGAAAAGG GGAGTATTTCTGGAGTGAA
SNO1539	<i>Leu2-FRT-URA-FRT</i> strain construction; amplifies <i>C.a. URA3</i> casette, forward	AGAAATACTCCCCTTTTCCTCGAGGAAGTTCCTA TACTTTCTAGAGAATAGGAACTTCGGATTTAACTC GAGCTACTGATATCAATGC
SNO1540	<i>Leu2-FRT-URA-FRT</i> strain construction; amplifies <i>C.a. URA3</i> casette, reverse	GCTAACTACTGTATATACTGGGATCTGAAGTTCC TATTCTCTAGAAAGTATAGGAACTTCCTGCTTAAA TCGATATAACTTGGTTTGA
SNO1541	<i>Leu2-FRT-URA-FRT</i> strain construction; amplifies <i>Leu2</i> 3' flank, forward	CAAGTTATATCGATTTAAGCAGGAAGTTCCTATA CTTTCTAGAGAATAGGAACTTCAGATCCCAGTAT ATACAGTAGTTAGCATTTA
SNO467	<i>Leu2-FRT-URA-FRT</i> strain construction; amplifies <i>Leu2</i> 3' flank, reverse	GTCGACGGTATCGATAAGCTTGATATCGAATTCC TGCAGCCCGGGGGGATCGTTTAAACTCGAAAACG ATGTTTGCACCACCG
SNO1443	Leu2-FRT-URA-FRT strain verification check, left. forward	GCTTTGAGTTCTGGGTCAGC
SNO1547	<i>Leu2-FRT-URA-FRT</i> strain verification check, left. reverse	GTTGACCGTATCAGTAGCATCATC
SNO1447	<i>Leu2-FRT-URA-FRT</i> strain verification check, right. reverse	CGCTACCCAACAAAGAGACC
SNO1542	Leu2-FRT-URA-FRT strain verification check, right. forward	GCAATCGAAGTAGCTGGGATA
SNO509	URA excision verification primer, and qPCR for <i>SN235 WT</i> , forward	GTTGTGATTTTGCTATTCCGGCGCT
SNO840	URA excision verification primer, reverse	TCTCTCCGAATGAAGAGCC
SNO1650	<i>Leu2</i> knockout verification primer for strains <i>SN78</i> and <i>SN1020</i> , forward	GAAATGCTGGTTGGAATGCT
SNO1652	<i>Leu2</i> knockout verification primer for strains <i>SN78</i> and <i>SN1020</i> , reverse	GCGGTCTAGAAGGACCACCT
SNO819	qRTPCR for ACT1 ORF, forward	GTGGTACTACCATGTTCCCAGG
SNO820	qRTPCR for ACT1 ORF, reverse	GATAGAACCACCAATCCAGACAGAG
SNO1154	qRTPCR for WOR1 ORF, forward	TGCTGGTGGATCTAGTAGTGTAGC
SNO1155	qRTPCR for WOR1 ORF, reverse	AGTACCGGTGTAATACGACCCAGA
SNO1603	qRTPCR for TDH3 ORF, forward	GCTCCAGACTATGCTGCTTACAT
SNO1604	qRIPCR for <i>IDH3</i> ORF, reverse	GGAAIGIIAGCIGGGICICIIIC
SNO1332	forward	GGAATTATTGTCTAACCTGCCCGTGG
SNO1333	<i>MTLa-</i> ko gene disruption primer 3' flank, reverse	CGTTACTAGTGGATCCGAGCTGCGGCCGCATAT ACACTGGAAATAAGTGGTGGTAGT
SNO1336	<i>MTLa-</i> ko gene disruption primer 5' flank, forward	TCAATCAGGTTGCGGTGTGGCGCGCCTATATGT ACATACAAAACTGGTTATTGTAGCAGG
SNO1335	<i>MTLa-</i> ko gene disruption primer 5' flank, reverse	CCCTTGGGTAGTAAAGGTAAAGCCAATGCCG
SNO1315	<i>MTLa-</i> ko gene disruption, primer to amplify <i>C. dubliniensis HIS1</i> casette, forward	TATATGCGGCCGCAGCTCGGATCCACTAGTAAC G

SNO1318	<i>MTLa-</i> ko gene disruption, primer to amplify <i>C. dubliniensis HIS1</i> casette, reverse	ATATAGGCGCGCCACACCGCAACCTGATTGATAC CAGTGTGATGGATATCTGC
SNO1337	MTLa-ko 3' integration verification check, reverse	GTTGGTGAACCTAAAGTACTTTATTGG
SNO1339	MTLa-ko 3' integration verification check, forward	AGTGGATCCGAGCTGCGGCCGCATATA
SNO1340	MTLa-ko 5' integration verification check, forward	TTGAGTGTTGCTGGTCTTGC
SNO1341	<i>MTLa</i> -ko 5' integration verification check, reverse	TGCAGATATCCATCACACTGG