Table S1. Description of genes selected for analyses in this study.
	Gene
	Description
	Mutant phenotype for hyphal growth, biofilm formation and in/ex vivo virulence
	Reference

	ALS3
	Adhesin, invasin, ferritin receptor
	normal filamentous growth, abnormal biofilm formation, decreased virulence
	[1,2,3,4]

	BCR1
	C2H2 zinc finger transcription factor, biofilm and cell wall regulator
	normal filamentous growth, abnormal biofilm formation, normal virulence
	[5,6]

	BUD2
	GTPase activating protein for Rsr1, involved in polar bud site selection and hyphal growth guidance, thigmotropism
	abnormal filamentous growth
	[7]

	CKA2
	Catalytic subunit (alpha-subunit) of protein kinase CK2, central role in governing calcium homeostasis
	normal filamentous growth, decreased virulence
	[8,9]

	CPH1
	Transcription factor required for mating and hyphal growth on solid media
	normal filamentous growth, abnormal biofilm formation, decreased virulence
	[10,11,12,13,14]

	CPH2
	Myc family bHLH transcriptional activator of hyphal growth
	normal filamentous growth, normal virulence
	[15,16,17]

	CZF1
	Zink finger protein, regulator of hyphal growth
	abnormal filamentous growth, normal virulence
	[15,18]

	ECM33
	GPI-anchored cell wall protein, involved in cell wall integrity
	abnormal filamentous growth, decreased virulence
	[19]

	EFG1
	Transcription factor with bHLH required for hyphal growth and metabolism; cell-wall gene regulator
	abnormal filamentous growth, abnormal biofilm formation, decreased virulence
	[10,11,20,21]

	GPD2
	Similar to glycerol 3-P dehydrogenases
	normal filamentous growth
	[22]

	GPP1
	Putative glycerol 3-phosphatase
	normal filamentous growth
	[22]

	HGC1
	Hypha-specific G1 cyclin-related protein, regulation of hyphal morphogenesis
	abnormal filamentous growth, decreased virulence
	[23,24]

	HWP1
	Hyphal cell wall protein, adhesin
	normal filamentous growth, decreased biofilm formation, decreased virulence
	[5,25,26]

	HYR1
	GPI-anchored cell wall protein, hyphal-induced, macrophage-induced
	normal filamentous growth
	[27]

	IPF946 (EED1)
	Epithelial escape and dissemination
	abnormal filamentous growth
	[28]

	ICL1
	Isocitrate lyase of the glyoxylate cycle, involved in utilization of alternative carbon metabolism
	normal filamentous growth, decreased virulence
	[29]

	MKC1
	MAP kinase of the cell wall integrity pathway, contact induced filamentation
	normal filamentous growth, abnormal biofilm formation, decreased virulence
	[30,31,32]

	PLB1
	Phospholipase B
	normal filamentous growth, decreased virulence 
	[33]

	PMT2
	Mannosyltransferase, involved in cell wall regeneration (β-1,6-glucan and mannoprotein levels)
	homozygous mutant not viable, heterozygote abnormal filamentous growth, decreased biofilm formation
	[34,35]

	RAS1
	RAS signal transduction GTPase; regulates cAMP and MAP kinase pathways
	abnormal filamentous growth, decreased virulence
	[36,37]

	RIM101
	Transcription factor involved in alkaline pH response
	abnormal filamentous growth, decreased invasive growth, decreased virulence
	[38,39,40]

	RSR1
	GTP/GDP cycling, involved in polar bud site selection and hyphal growth guidance, thigmotropism
	abnormal polar bud site selection and hyphal growth guidance, thigmotropism, decreased virulence
	[7]

	SOD5
	Copper- and zinc-containing superoxide dismutase, required for oxidative stress tolerance
	normal filamentous growth, decreased virulence
	[41]

	TEC1
	TEA/ATTS transcription factor involved in regulation of hypha-specific genes, regulates Bcr1
	abnormal filamentous growth, decreased biofilm formation, decreased virulence
	[6,16,42,43]

	TPK1
	Catalytic subunit of cAMP-dependent protein kinase (PKA), isoform of Tpk2p
	abnormal filamentous growth, normal virulence
	[20,44,45]

	TPK2
	Catalytic subunit of the cAMP-dependent protein kinase A (PKA)
	abnormal filamentous growth, reduced virulence
	[20,45,46]

	TUP1
	Repressor of filamtous growth
	hyperfilamentous growth, decreased virulence
	[11,47,48,49]

	VPS11
	Involved in protein trafficking; putative role in vesicle-target membrane fusion, required for vacuole formation
	abnormal filamentous growth, decreased virulence
	[50,51]

	YHB1
	Nitric oxide dioxygenase, required in nitric oxide scavenging/detoxification
	abnormal filamentous growth, decreased virulence
	[52]

	orf19.851
	Protein of unknown function; transcription is negatively regulated by Rim101p (Eukaryot Cell 2(4):718-28)
	/
	

	orf19.2833
	PGA34, putative GPI-anchored protein of unknown function; transcription is repressed in response to alpha pheromone in SpiderM medium
	/
	

	orf19.3459
	Not characterized
	/
	

	orf19.3600
	Not characterized
	/
	

	orf19.6837
	Not characterized
	/
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