Genome-wide Analysis papers

Help

Click on a topic to see a list of all papers associated with that topic:

Genome-wide AnalysisProteome-wide Analysis
Comparative genomic hybridizationLarge-scale protein detection
Computational analysisLarge-scale protein interaction
Genomic co-immunoprecipitation studyLarge-scale protein localization
Genomic expression studyLarge-scale protein modification
Large-scale genetic interactionOther large-scale proteomic analysis
Large-scale phenotype analysis 
Other genomic analysis 

Result Page : 1234567891011121314151617181920Next

ReferenceLiterature TopicSpeciesGenes Addressed
Arribas V, et al. (2024) Unravelling the Role of Candida albicans Prn1 in the Oxidative Stress Response through a Proteomics Approach. Antioxidants (Basel) 13(5)
CGD Papers Entry  Pubmed Entry  
Large-scale protein detectionC. albicans |C1_00700W_A |CR_09140C_A |CUB1 |MNL1 |NRG1 |PRN1 |QCR9
Avelar GM, et al. (2024) A CO(2) sensing module modulates beta-1,3-glucan exposure in Candida albicans. MBio :e0189823
CGD Papers Entry  Pubmed Entry  Web Supplement  Data  
Genomic expression studyC. albicans |NCE103 |PHO84 |RCA1 |SCH9 |XOG1
Bergin S, et al. (2024) Analysis of clinical Candida parapsilosis isolates reveals copy number variation in key fluconazole resistance genes. Antimicrob Agents Chemother :e0161923
CGD Papers Entry  Pubmed Entry  
Genomic expression studyC. parapsilosis |CDR1 |CDR1B |ERG11 |MDR1 |MDR1B |MRR1
Bregon-Villahoz M, et al. (2024) Candida albicans cDNA library screening reveals novel potential diagnostic targets for invasive candidiasis. Diagn Microbiol Infect Dis 109(3):116311
CGD Papers Entry  Pubmed Entry  
Other large-scale proteomic analysisC. albicans |APE2 |CYS3 |ENO1 |HYR1 |SEC21
Chow EWL, et al. (2024) Genome-wide profiling of piggyBac transposon insertion mutants reveals loss of the F(1) F(0) ATPase complex causes fluconazole resistance in Candida glabrata. Mol Microbiol
CGD Papers Entry  Pubmed Entry  Web Supplement  Data  
Genomic expression study, Large-scale phenotype analysisC. glabrata |ATP22 |ATP3 |CDR1 |PDH1 |PDR1 |SNQ2
Dunaiski CM, et al. (2024) Molecular epidemiology and antimicrobial resistance of vaginal Candida glabrata isolates in Namibia. Med Mycol
CGD Papers Entry  Pubmed Entry  
Other genomic analysisC. glabrata |CDR1 |ERG6 |ERG7 |FKS1 |FKS2 |FPS1 |MSH2 |PDR1 |SNQ2
Gavandi T, et al. (2024) MIG1, TUP1 and NRG1 mediated yeast to hyphal morphogenesis inhibition in Candida albicans by ganciclovir. Braz J Microbiol
CGD Papers Entry  Pubmed Entry  
Genomic expression studyC. albicans |MIG1 |NRG1 |TUP1
Hefny ZA, et al. (2024) Transcriptomic meta-analysis to identify potential antifungal targets in Candida albicans. BMC Microbiol 24(1):66
CGD Papers Entry  Pubmed Entry  
Genomic expression studyC. albicans |C3_06710W_A |C4_01950W_A |C7_03400C_A |GLC7 |PRA1 |RIM101 |RIM21 |RSP5 |SAP4 |SAP6 |SOD1 |SOD2 |SOD3 |SOD4 |MORE
Jaeger M, et al. (2024) Alpha1-antitrypsin impacts innate host-pathogen interactions with Candida albicans by stimulating fungal filamentation. Virulence :2333367
CGD Papers Entry  Pubmed Entry  
Genomic expression studyC. albicans |C2_05670C_A |CPH1 |CR_06090W_A |CR_07910C_A |ECE1 |EFG1 |HOC1 |MKC1 |OCH1 |SET3 |TCC1 |TUP1
Kumar K, et al. (2024) SWI/SNF complex-mediated chromatin remodeling in Candida glabrata promotes immune evasion. iScience 27(4):109607
CGD Papers Entry  Pubmed Entry  Web Supplement  Data  
Other genomic analysis, Genomic expression studyC. glabrata |BMT2 |CHD1 |EPA1 |INO80 |ISW1 |ISW2 |SNF2 |SNF5 |SNF6 |STH1 |SWR1
Misas E, et al. (2024) Genomic description of acquired fluconazole- and echinocandin-resistance in patients with serial Candida glabrata isolates. J Clin Microbiol :e0114023
CGD Papers Entry  Pubmed Entry  
Other genomic analysisC. glabrata |FKS1 |FKS2 |PDR1
Pavesic MW, et al. (2024) Calcineurin-dependent contributions to fitness in the opportunistic pathogen Candida glabrata. mSphere 9(1):e0055423
CGD Papers Entry  Pubmed Entry  
Large-scale phenotype analysisC. glabrata |ALG5 |ALG6 |ALG8 |APL2 |APS1 |ARF1 |CNB1 |CRZ1 |DCW1 |FKS1 |FLC2 |INP53 |LAS21 |PDR1 |MORE
Rai LS, et al. (2024) Metabolic reprogramming during Candida albicans planktonic-biofilm transition is modulated by the transcription factors Zcf15 and Zcf26. PLoS Biol 22(6):e3002693
CGD Papers Entry  Pubmed Entry  Web Supplement  Data  
Other genomic analysis, Genomic expression studyC. albicans |C1_02850W_A |C3_01800C_A |C3_04730C_A |C3_07460W_A |C4_02190C_A |C7_03830C_A |CBF1 |CR_02460W_A |ECE1 |GAL7 |HWP1 |HYR1 |INO1 |RBF1 |MORE
Sprague JL, et al. (2024) Candida albicans translocation through the intestinal epithelial barrier is promoted by fungal zinc acquisition and limited by NFkappaB-mediated barrier protection. PLoS Pathog 20(3):e1012031
CGD Papers Entry  Pubmed Entry  Web Supplement  Data  
Genomic expression studyC. albicans |ECE1 |PRA1 |ZRC1 |ZRT101 |ZRT2 |ZRT3
Teng W, et al. (2024) Heat Shock Protein SSA1 Enriched in Hypoxic Secretome of Candida albicans Exerts an Immunomodulatory Effect via Regulating Macrophage Function. Cells 13(2)
CGD Papers Entry  Pubmed Entry  
Large-scale protein detectionC. albicans |HSP70
Wakade RS, et al. (2024) Temporal dynamics of Candida albicans morphogenesis and gene expression reveals distinctions between in vitro and in vivo filamentation. mSphere :e0011024
CGD Papers Entry  Pubmed Entry  Web Supplement  Data  
Genomic expression studyC. albicans |BRG1 |CPH1 |CPH2 |ECE1 |EFG1 |HYR1 |IHD1 |NRG1 |PES1 |TEC1 |UME6 |YWP1
Wang Y and Xu J (2024) Associations between Genomic Variants and Antifungal Susceptibilities in the Archived Global Candida auris Population. J Fungi (Basel) 10(1)
CGD Papers Entry  Pubmed Entry  
Other genomic analysisC. auris |ERG11 |FKS1
Xiong L, et al. (2024) Regulatory features of Candida albicans hemin-induced filamentation. G3 (Bethesda)
CGD Papers Entry  Pubmed Entry  Web Supplement  Data  
Genomic expression studyC. albicans |BRG1 |CFL4 |CSA2 |EFG1 |FRE10 |FTR1 |HMX1 |PGA10 |PGA7 |RBT5 |RIM101 |YWP1 |ZCF20
Xu Y, et al. (2024) The rod cell, a small form of Candida albicans, possesses superior fitness to the host gut and adaptation to commensalism. Acta Biochim Biophys Sin (Shanghai)
CGD Papers Entry  Pubmed Entry  Web Supplement  Data  
Genomic expression studyC. albicans |CPH1 |CSA2 |CWP419 |EFG1 |HSP31 |LIP9 |NGS1 |OP4 |PGA26 |WH11 |WOR1
Zhang Y, et al. (2024) DNA Damage Checkpoints Govern Global Gene Transcription and Exhibit Species-Specific Regulation on HOF1 in Candida albicans. J Fungi (Basel) 10(6)
CGD Papers Entry  Pubmed Entry  
Genomic expression studyC. albicans |DUN1 |FKH2 |HMX1 |HOF1 |MCM1 |MRV6 |RAD53 |RAD9
Zhu X, et al. (2024) Mitochondrial Protease Oct1p Regulates Mitochondrial Homeostasis and Influences Pathogenicity through Affecting Hyphal Growth and Biofilm Formation Activities in Candida albicans. J Fungi (Basel) 10(6)
CGD Papers Entry  Pubmed Entry  
Genomic expression studyC. albicans |ALS1 |ALS3 |ECE1 |FTR1 |HWP1 |MP65 |OCT1 |RBT5
Abdulghani M, et al. (2023) Opaque Cell Specific Proteome of Candida albicans ATCC 10231. Med Mycol
CGD Papers Entry  Pubmed Entry  
Other large-scale proteomic analysisC. albicans |AGE3 |ALS1 |ATP1 |ATP16 |ATP3 |ATP7 |CCP1 |CCS1 |COX6 |CSH1 |GCS1 |GPX2 |GPX3 |GTT11 |MORE
Alam F, et al. (2023) Pseudomonas aeruginosa increases the susceptibility of Candida albicans to amphotericin B in dual-species biofilms. J Antimicrob Chemother
CGD Papers Entry  Pubmed Entry  Web Supplement  Data  
Genomic expression studyC. albicans |CAP1 |ERG6 |SOD2 |UPC2
Alings F, et al. (2023) Ncs2* mediates in vivo virulence of pathogenic yeast through sulphur modification of cytoplasmic transfer RNA. Nucleic Acids Res
CGD Papers Entry  Pubmed Entry  
Genomic expression studyC. albicans |NCS2 |tE(UUC)1 |tE(UUC)2 |tE(UUC)3 |tE(UUC)4 |tE(UUC)5 |tE(UUC)6 |tE(UUC)7 |tK(UUU)1 |tK(UUU)2 |tK(UUU)3 |tK(UUU)4 |tK(UUU)5
Balla N, et al. (2023) Total transcriptome analysis of Candida auris planktonic cells exposed to tyrosol. AMB Express 13(1):81
CGD Papers Entry  Pubmed Entry  
Genomic expression studyC. auris |CAP1 |HSP78 |SOD4
Ben Abid F, et al. (2023) Molecular characterization of Candida auris outbreak isolates in Qatar from COVID-19 patients reveals the emergence of isolates resistant to three classes of antifungal drugs. Clin Microbiol Infect
CGD Papers Entry  Pubmed Entry  
Other genomic analysisC. auris |CDR1 |CDR2 |CIS2 |ERG11 |ERG3 |ERG4 |ERG5 |FKS1 |SNQ2 |STE6 |TAC1b
Brandt P, et al. (2023) High-Throughput Profiling of Candida auris Isolates Reveals Clade-Specific Metabolic Differences. Microbiol Spectr :e0049823
CGD Papers Entry  Pubmed Entry  
Genomic expression study, Large-scale phenotype analysisC. auris |B9J08_002974 |B9J08_003830 |B9J08_004062 |B9J08_004066 |B9J08_004188 |B9J08_004204 |B9J08_004243 |B9J08_004448 |B9J08_004538 |B9J08_004560 |B9J08_004893 |B9J08_005124 |B9J08_005570 |B9J08_005571 |MORE
C. albicans |JEN1 |JEN2 |TNA1
Case NT, et al. (2023) Respiration supports intraphagosomal filamentation and escape of Candida albicans from macrophages. mBio :e0274523
CGD Papers Entry  Pubmed Entry  
Large-scale phenotype analysisC. albicans |COR1 |MRP21 |SNF1
Chow EWL, et al. (2023) The transcription factor Rpn4 activates its own transcription and induces efflux pump expression to confer fluconazole resistance in Candida auris. MBio :e0268823
CGD Papers Entry  Pubmed Entry  Web Supplement  Data  
Genomic expression studyC. auris |CDR1 |MDR1 |MUB1 |RPN4 |UBR2
Cravener MV, et al. (2023) Reinforcement amid genetic diversity in the Candida albicans biofilm regulatory network. PLoS Pathog 19(1):e1011109
CGD Papers Entry  Pubmed Entry  
Genomic expression studyC. albicans |BRG1 |C2_05770W_A |EFG1 |RFX2 |UME6 |WOR3
Result Page : 1234567891011121314151617181920Next



Return to CGD
Send a Message to the CGD Curators